Squadron Documentation
Release 0.3.1

Squadron Leader

March 12, 2014

Contents

Squadron Documentation, Release 0.3.1

Contents:

Contents 1

Squadron Documentation, Release 0.3.1

2 Contents

CHAPTER 1

Getting Started

Squadron configures your service. It install packages, writes out templates, and tests them.

If you want to follow along with this guide, we’ve made a git repo for you so you don’t have to type out all these
commands if you don’t feel like it.

Just do this and you’ll be at the end of the first part of the getting started guide:

$ git clone -b simple2 https://github.com/gosquadron/example-squadron-repo.git

1.1 Install Squadron

First, get the prerequisites:

$ sudo apt—-get install git python python-pip

or, if you’re on OS X:

$ brew install python python-pip git

Now let’s install squadron:

$ pip install squadron

$ squadron setup

Location for config [/home/user/.squadron]:
Location for state [/home/user/.squadron/state]:
Initializing config dir /home/user/.squadron
Initializing state dir /home/user/.squadron/state

Squadron can be installed into a virtualenv. It uses a directory to store Global Configuration and another one to store
the state change of your services.
Squadron looks for config in the following places:

* /etc/squadron/config

* /ust/local/etc/squadron/config

* ~/.squadron/config

From there it reads the location of its state directory.

Squadron Documentation, Release 0.3.1

1.2 Start a Squadron repository

It’s not too hard:

$ mkdir squadron
$ cd squadron
$ squadron init

$ 1s

config/ services/ nodes/ libraries/

$ git rev-parse —--is-inside-work-tree
true

Squadron uses git for everything, so squadron init automatically makes a git repository for you!

1.3 Describe your service

So, to deploy a service, you need to tell Squadron how to do it. We’re going to deploy a simple website as an example.

To make a service, we need to provide a service version. This isn’t the version of our website, but instead the version
of this deployment configuration:

$ squadron init —--service website —--version 0.0.1
$ tree -F services/website

website/

-- 0.0.1/

—-— actions. json
—— defaults.json
—-— react.json

-— root/

—— schema. json
—-—- state.json

-— tests/

We won’t need all these files yet, and Squadron gives you sensible defaults if you don’t need the features they provide.
Let’s make a state.json to install apache2 for our simple website:

{
"apt": ["apache2"]
}

Now when we later run squadron, it’ll make sure that Apache is installed.

1.3.1 Templating

Squadron takes whatever files you have in root/ and deploys them to the correct directory (which in this):

$ cd services/website/0.0.1
S tree -F root
root/

—-— main~git

—— robots.txt~tpl

So we’ve got two strange looking filenames. The tilde (~) means that Squadron will apply that handler to that file. The
‘~tpl” extension is how you make files via a template.

Squadron uses the Quik templating library, so robots.txt~tpl will look something like this:

4 Chapter 1. Getting Started

http://quik.readthedocs.org/en/latest/

Squadron Documentation, Release 0.3.1

User—agent: =

#for @d in @disallow:
Disallow: @d

#end

Allow: /humans.txt

So the variable @disallow, which is an array, is looped over and so there are as many Disallow directives as elements
in the array.
main~git looks like this:

{
"url":"https://github.com/cxxr/example-squadron-repo.git",
"refspec":"@release"

}

Squadron will clone this repo when it runs, checkout the refspec simple (which is a branch, a tag, or a hash) and place
it in the ‘main’ directory. The variable ‘@release* will be replaced by whatever we set that to later

1.3.2 Configuration

How do all those values get set? They’re set in two ways.

The first is from the service configuration for each environment. Back in the top level of the Squadron directory,
there’s a directory called config/. In it are your environments.

Environments are distinct places you can deploy your code to that don’t interact with each other. This allows you to
have multiple testing environments that don’t affect your customers. Let’s make a development environment for our
website:

$ cd -

$ 1s

config/ services/ nodes/ libraries/
$ squadron init —--env dev

Now there’s a file called config/dev/website.json, which is prepopulated with the latest version number. Let’s add the
disallow config so the file looks like this:

{
"base_dir": "/var/www",
"config": {
"disallow":["/secret/*","/admin/*"],
"release":"master"

by

"version": "0.0.1"

}

The “version” field tells Squadron which service description version to use. Different environments can use different
service description versions at the same time.

The “config” field is a JSON object that will be given to your service. These fields can be used in templates. If you
have config that is often the same between environments, you can put it in another place.

The “base_dir” field tells Squadron where the root/ directory should be written to. Since we’re just deploying files to
our web root, it’s /var/www.

The second way in which these values are set is via defaults.json. This file can be used to set default values in case
none are set. Keys are the key in question, and the values are the values you would set in the config.

An equivalent defaults.json for our website would be:

1.3. Describe your service 5

mailto:'@release

Squadron Documentation, Release 0.3.1

"disallow":["/secret/+","/admin/+"]

1.3.3 Schema

Squadron includes one very useful file with every service description called services/website/0.0.1/schema.json. This
is a JSON schema describing the configuration that your service accepts. For our service it looks like this:

{

"Sschema": "http://json-schema.org/draft-04/schema#",
"type" : "object",
"properties" : {
"disallow" : {
"description" : "a list of disallow directives",
"type" : "array",
"items": {
"type": "string"
}l
"uniqueltems": true
}V
"release" : {
"description" : "what to checkout from the git repository",
"type" : "string"
}
}I
"required": ["disallow", "release"]

}

This allows you to be sure that you passed in the correct types of input in your config files and in your defaults. If you
don’t supply a JSON Schema, everything will still work, but it won’t be checked, either.

You can do some fairly advanced things with JSON Schema, such as regular expression matching. With this you could
ensure that “release” met some tag pattern or similar.

1.4 Nodes

Now, how can you make sure that each node which runs Squadron runs the correct stuff? That the database node
doesn’t install Apache? Enter the nodes directory:

$ 1s
config/ services/ nodes/ libraries/
$ cd nodes

This directory should have in it exact domain name matches (FQDN, to be precise) of the machine, or you can use
glob style matching with percent (%) being the glob marker, instead of the usual asterisk (*). Files would look like
these:

S 1s

dev-01l.nyc.example.com # Only matches the machine with that name
dev-%.example.com # Matches all dev machines
%—db%.example.com # Matches all database machines

% # Matches all machines

Node files look like this:

6 Chapter 1. Getting Started

http://json-schema.org/

Squadron Documentation, Release 0.3.1

o\°

$ cat

{
"env":"dev",
"services": ["website"]

}

Any node will run website in the dev environment unless overridden by another, more specific node file. All node files
that match are sorted by length ascending, and applied in that order.

1.5 Testing your changes locally

We want to make sure that our configuration works as expected. Squadron allows you to see the result of your
configuration before even touching a remote server.

Here we will pretend that we are the machine mywebserver.com and see the results locally without modifying our
system:

$ squadron check

Staging directory: /tmp/squadron-s70Rjh
Would process apache2 through apt

Dry run changes

Paths changed:

New paths:
website/robots.txt
website/main/LICENSE
website/main/README .md
website/main/index.html

$ tree -F /tmp/squadron-s70Rjh
/tmp/squadron-s70Rjh
‘—— website/

|-— main/

| | -— index.html

| | -— LICENSE

| ‘—— README.md

‘-— robots.txt

Our template was applied as well:

$ cat /tmp/squadron-s70Rjh/website/robots.txt
User—agent: =

Disallow: /secret/x

Disallow: /admin/=*
Allow: /humans.txt

1.6 Deploying your changes (locally)

Now, if the machine you’re developing on is the machine you’d like to set up your website on (which is unlikely), you
can just apply your changes:

1.5. Testing your changes locally 7

Squadron Documentation, Release 0.3.1

$ sudo squadron apply

Staging directory: /var/squadron/tmp/sg-0
Processing apache2 through apt

Applying changes

Successfully deployed to /var/squadron/tmp/sg-0

Paths changed:

New paths:
website/main/README .md
website/robots.txt
website/main/index.html
website/main/LICENSE

And you can see that this won’t work twice in a row, as nothing has changed:

$ sudo squadron apply

Staging directory: /var/squadron/tmp/sqg-1
Processing apache2 through apt

Nothing changed.

Notice how the staging directory was increased by one. This lets you have several staged (but not deployed) versions
in case of test or deployment failures. This is also how auto-rollback works.
Running squadron check produces similar results:

$ squadron check

Staging directory: /tmp/squadron-H1Vym2
Would process apache2 through apt
Nothing changed.

1.7 Deploying your changes (remotely)

Squadron will work regardless of how you get your files to your remote servers. If you SCP them over each time and
then run squadron apply, it’ll work, but that’s not very convenient.

The standard way is polling the git repository.
You’ll need a git server and then the squadron daemon running on your web server.
Set up git:

git remote origin add your_origin

git add files you changed

git commit # automatically runs squadron check for you!
git push # deploys!

v W A

Then set up the daemon:

$ squadron daemon

It’s really that easy. Any node running the Squadron daemon will pull down your changes over the next 30 seconds.

You can configure the poll interval and logging for the daemon using the system config file described in Global
Configuration.

8 Chapter 1. Getting Started

Squadron Documentation, Release 0.3.1

1.8 More environments

Now that you’ve tested your website in your development environment, it’s time for it to go to production:

$ squadron init —--env prod —--copyfrom dev
Initialized environment prod copied from dev

This is another way to initialize environments. It copies all the config from the dev environment to the prod environ-
ment. Now we have this in config:

$ tree -F config

config/

| —— dev

| ‘-— website. json
‘-— prod

\

-— website.json
$ diff -u config/dev/website.json config/prod/website. json

$

No differences because they’re the same!
Let’s change our nodes so that nodes can choose to be dev or production:

$ cd nodes

S mv % dev$

$ cat > prod%

{
"env":"prod",
"services": ["website"]

}

Any node whose name begins with dev will get the dev environment, while any node that begins with prod will get the
prod environment. This allows you to test your changes before making them live.

1.8. More environments 9

Squadron Documentation, Release 0.3.1

10 Chapter 1. Getting Started

CHAPTER 2

Next steps

Now that you have a basic Squadron setup going, it’s time to make it do more for you.

If you want to follow along with this guide, we’ve made a git repo for you so you don’t have to type out all these
commands.

Just do this and you’ll be at the start of the next steps guide (which is the end of the getting started guide):

$ git clone -b simple2 https://github.com/gosquadron/example-squadron-repo.git

The end result of this page is in the nextsteps2 branch of the same repo.

2.1 Apache configuration

Now we want our website to be in PHP. So let’s look at what we’re starting with:

S tree -F
|-— config/
| | -—— dev/
| | ‘-— website. json
| ‘—— prod/
| ‘-— website.json
|-— libraries/
| -— nodes/
| | —— dev%
| ‘—— prod$%
‘—-— services/

‘—— website/

‘—— 0.0.1/

|-— actions. json

|-— defaults.json

|-— react.json

|-— root/

| |-— main~git

| ‘—-— robots.txt~tpl
| -— schema. json

|-— state.json

‘—— tests/

Okay, so let’s make a new dev version of our service:

11

Squadron Documentation, Release 0.3.1

$ cp -r services/website/0.0.1 services/website/1.0.0

It’s important to use semantic versioning for your services, as it communicates vital information to the user. This new
version will be backwards incompatible. Let’s update our dev environment:

$ cat > config/dev/website. json

{

"base_dir": "/",

"config": {
"disallow":["/secret/*","/admin/*"],
"release":"master"

}I

"version": "1.0.0"

}

We’ve changed the base_dir to be root because we’re going to need to be updating a lot of different paths. We’ve also
increased the version to match our latest version.

2.1.1 New root

Let’s make our new root directory:

cd services/website/1.0.0/root
mkdir -p var/www/

mv main~git var/www/

mv robots.txt~tpl var/www/

v Ay

You can see how this reflects our new base_dir of root. It would also be nice if we released our web root atomically
so that if anyone happens to load it while we’re copying over, they don’t get half new and half old assets. Fortunately,
this is really easy with Squadron:

$ cat > config.sqg
var/www/ atomic:true user:nobody group:nobody

The config.sq file in the root directory of a service is special. It’s not copied to your base_dir, but instead configures
some metadata, such as setting the user, group, or mode for a file or directory.

What we’ve done here is to tell Squadron to do an atomic deploy of var/www/, which means it will use a symbolic
link from /var/www/ to Squadron’s deployment directory.

2.1.2 Apache module

We also need to make sure that PHP is installed:

$ cd
$ cat > state.json

{
"apt": ["apache2", "libapache2-mod-php5"]
}

Now we need to run a2enmod when this is installed. We actually need to set up two files for this: actions.json and
react.json.

The file actions.json describes the possible actions that can take place. These are commands that are run. Sometimes
restarting the service, sometimes starting it. Ours will look like this:

12 Chapter 2. Next steps

http://semver.org/

Squadron Documentation, Release 0.3.1

"run aZ2enmod php": {
"commands": ["aZenmod php5", "/etc/init.d/apache2 restart"],
}’
"start" : {
"commands" : ["/etc/init.d/apache2 start"]
}’
"reload" : {
"commands" : ["/etc/init.d/apache2 reload"],
"not_after" : ["start", "restart"]
}I
"restart" : {
"commands" : ["/etc/init.d/apache2 restart"],
"not_after" : ["start"]

So we have four actions. Three are easy enough to understand: they control the running of the service. Starting apache,
reloading it, and restarting it. The not_after property means that if there are several actions to run for a deployment, that
these should not be run after successful invocations of those. This will be more clear after understanding react.json.

The file react.json describes how to react to various events. It gives criteria for the events and then which actions to
execute. Ours looks like this:

[

"execute": ["run a2enmod php"],
"when" : {
"not_exist": "/etc/apache2/mods-enabled/php5"
}
b
{
"execute": ["start"],
"when" : {
"command": "/etc/init.d/apache2 status",
"exitcode_not": O
}
}I
{
"execute" : ["reload"],
"when" : {
"files" : ["x.conf", "x/conf.d/x"]

For a complete description of actions and reactions, see Action and reaction in the User Guide.

Let’s do it:

$ sudo squadron apply -n dev

Staging directory: /var/squadron/tmp/sqg-8

Processing apache2, libapache2-mod-php5 through apt

Applying changes

Running action website.run aZ2enmod php in reaction {u’execute’: [u’website.run aZ2enmod php’], u’when’

Module php5 already enabled

+ Restarting web server apache?2
apache2: Could not reliably determine the server’s fully qualified domain name, using 127.0.1.1
waiting apache2: Could not reliably determine the server’s fully qualified domain name, using 12

2.1. Apache configuration 13

Squadron Documentation, Release 0.3.1

Apache2 is running (pid 2332).
Successfully deployed to /var/squadron/tmp/sg-8

Paths changed:

New paths:
website/var/www/main/LICENSE
website/var/www/main/index.html
website/var/www/main/README .md
website/var/www/robots.txt
$ 1s -1 /var/www
lrwxrwxrwx 1 root root 39 Jan 01 00:00 /var/www —-> /var/squadron/tmp/sg-8/website/var/www/

And navigating to http://localhost works!

2.1.3 Testing

An important part of deploying software is making sure it’s correct. For our purposes, we want to check that PHP is
working and that Apache was set up correctly.

In Squadron, 7ests are located in the service’s tests directory. Let’s make one now:

$ mkdir -p services/website/1.0.0/tests
$ cat > services/website/1.0.0/tests/check_php.sh
#!/bin/bash

while read line; do
true

done

OUTPUT="‘curl http://localhost/main/test.php 2>/dev/null’

if ["$?" -eqg "O"]; then
if [[$OUTPUT == xphp*]]; then
echo "PHP not enabled"
exit 1
fi
else
echo "Couldn’t connect"
exit 1
fi

Tests must read in the JSON object passed via standard in. For our test, we don’t care about the configuration, so we
just throw it away.

We then test that the connection worked via the exit code flag $?. If curl was successful, we check to make sure the
output didn’t have the string “php” in it, which would indicate that PHP wasn’t configured properly.

Almost done. We just need to make sure this test is executable and that curl is installed:

$ chmod +x services/website/1.0.0/tests/check_php.sh
$ cat > services/website/1.0.0/state.json
{

"apt": ["apache2", "libapache2-mod-php5", "curl"]
}

And now we’re done. Let’s run it:

14 Chapter 2. Next steps

http://localhost

Squadron Documentation, Release 0.3.1

$ sudo squadron apply -n dev

Staging directory: /var/squadron/tmp/sg-11

Processing apache2, libapache2-mod-php5, curl through apt
Running 1 tests for website v1.0.0

Nothing changed.

2.2 Keeping state between runs

Squadron keeps a file in the state directory (/var/squadron/info.json for some nodes) which describes what the last
successful run did. Here is the info.json file from our last run:

{
"commit": {
"website": {

"version":"1.0.0",
"config":{
"release":"master",

"disallow": [
"/secret/«",
"/admin/ "

1

by
"atomic": {
"var/www/" :true
}o
"dir":"/var/squadron/tmp/sq-8/website",
"base_dir":"/"
}

}I

"dir":"/var/squadron/tmp/sqg-8",

"checksum": {
"website/var/www/main/LICENSE":"3d8f45ba8cabebf6e9990f580df8387d49f3e72e9119ff19e63393cl12d236aff
"website/var/www/main/index.html":"f680e220f5e58408b233b700d01060b70582765937ca983e7969fd9%b66dee5"
"website/var/www/main/README .md" :"0b3b1635d69e0e501e82d9%9ec70d15d650f17febcdeal3ddad7adbd07a6025a7:
"website/var/www/robots.txt":"1bb88650e0acl7db58a556033c0e9cda3534902f8c9cef87ffa8acdcabe0635f"

The commit block describes what was committed. It is a dictionary of all services, what version was deployed, and
what configuration was used. We can see that we deployed version 1.0.0 of our website service description, with the
expected configuration. It’s also shown that var/www/ was deployed atomically.

There is also a checksum dictionary which keeps the SHA-256 sum of each file it deploys. If Squadron notices that
one of the next run’s files has a different SHA-256 sum, it will replace it.

If we try to rerun Squadron it won’t reapply anything because nothing tracked by Squadron is different:

$!sudo

sudo squadron apply —-n dev

Staging directory: /var/squadron/tmp/sqg-9
Processing apache2, libapache2-mod-php5 through apt
Nothing changed.

You can grab the completed example for this section by checking out the nextsteps2 branch from the example repo:

$ git clone -b nextsteps2 https://github.com/gosquadron/example-squadron-repo.git

2.2. Keeping state between runs 15

Squadron Documentation, Release 0.3.1

2.3 Where to go from here

The User Guide describes all of the functionality of Squadron. If you’re looking for more extension handlers or more
state libraries, that’s the place to go. You could even write your own.

16 Chapter 2. Next steps

CHAPTER 3

User Guide

This is a reference guide to the various components of Squadron.

3.1 Extensions

Extensions are used in the root directory of a service to do some kind of transformation on them.

3.1.1 dir

The ‘dir’ extension creates an empty directory of that name.
Contents

None

3.1.2 download

The ‘download’ extension downloads a file over HTTP.
Contents

A single line of the HTTP endpoint with an optional SHA256 prefix hash of the file. Will have a template applied to
it, so variable substitution and logic is possible.

Examples:

http://www.example.com/filename.ext a7898bc

or:

http://no.sha256.here.com/file.to.download.txt

3.1.3 extract

The ‘extract’ extension downloads and extracts tarballs and zip files.
Contents

The extract extension handler takes a JSON object like this:

17

Squadron Documentation, Release 0.3.1

{
"url": "http://www.example.com/dir/file.tar.bz2"
}

or with manually specifying the type:
{

"url": "https://www.example.com/dir/filename_without_ext",
"type": "tar.gz"
}

The extract handler can also copy files out of the tarball:

{

"url": "https://www.example.com/dir/file.zip",
"persist": false,
"copy": [
{
"from": "testx",
"to": "/etc/test/"
}V
{
"from": "dir/file.txt",
"to": "../file.txt"

}

The full list of supported fields is described in the following table.

Name Description

url URL to download the tarball from. Required.

type | One of “tar.gz”, “tar”, “tar.bz2”, or “zip”. Optional if it can be inferred from filename.

per- | Whether or not to keep around the directory specified by this extension handler. If false, it should be used
sist | with copy, as non-copied files will be unavailable. Defaults to true.

copy | An array of copy objects, described in the following table.

The copy objects are described in the following table.

Name Description

from| A glob match which matches files based on the path relative to the tarball.

to The destination to copy the files to. If it’s an absolute path, it copies it there. If it’s a relative path, it’s
relative to the directory that would have been created by the extension handler if persist was true. Does not
create directories.

3.1.4 git

The ‘git’ extension clones git repositories.
Contents

A JSON object with properties such as “url”. Will have a template applied to it, so variable substitution and logic is
possible.

Examples:

{
"url":"https://github.com/gosquadron/squadron.git"
}

18 Chapter 3. User Guide

Squadron Documentation, Release 0.3.1

or:

{
"url":"git@github.com:gosquadron/example-squadron-repo.git",
"refspec":"experimental"

}

or even:

{
"url":"git@github.com:gosquadron/example-squadron-repo.git",
"refspec":"@release",
"sshkey":"ssh_keys/deployl",
"args":"—-—depth=2"

}

The last example requires that the ssh_keys/deployl resource exists and is a private ssh key. See the Resources section
for more information. It also does a shallow clone of the git repository via the —depth argument.

The properties allowed in the object are described in the following table:

Name | Description

url URL to clone the git clone from. Required.

refspec | The branch, tag, or commit hash to checkout after clone. Optional.

sshkey | Relative path to the sshkey resource. See the Resources section for more information. Optional.
args Command line arguments to pass to git clone. Optional.

3.1.5 tpl

The template extension simply applies a template to the given file.
Contents

The template is the content.

Example:

<html>
<body>
<hl>Hello, @user!</hl>
#for @p in @paragraphs:
<p>Q@p</p>
#end
</body>
</html>

3.1.6 virtualenv

Creates a Python virtualenv. The virtualenv and pip commands must be available and in the current user’s PATH. Run
through a template so variable substitution is possible.

Contents

The contents of this file are passed to pip as if they were a requirements.txt file.

Example:

3.1. Extensions 19

http://www.virtualenv.org
http://www.pip-installer.org

Squadron Documentation, Release 0.3.1

Flask==Q@versions.flask
Jinja2==2.6
Werkzeug==0.8.3
certifi==0.0.8
chardet==1.0.1
distribute==0.6.24
gunicorn==0.14.2
requests==0.11.1

3.2 Libraries

Libraries are Python modules which are applied through state.json.

3.2.1 How to write a library

In the libraries directory of your Squadron repository, you can place a Python module.
The Python module should expose three functions:

def schema () :
return {}

def verify (inputhashes):
return []

def apply (inputhashes, dry_run=True):
return []

The schema function should return the Python representation of a JSON schema. It describes one object passed into
the verify function.

The verify function takes a list of objects (of the type described in the schema). It then returns a list of objects that are
not already in the state specified.

The apply function takes the list of objects that failed verification (weren’t yet in the state they were supposed to be
in) and a boolean dry_run. It returns a list of objects that couldn’t be applied.

3.2.2 Included libraries

Some libraries are included with Squadron so you don’t have to write them yourself.

apt

Installs packages via apt. Takes a list of string names, each string is a package to be installed via apt.
Example state.json with apt:

{
"apt": ["screen", "tmux"]

}

20 Chapter 3. User Guide

http://json-schema.org

Squadron Documentation, Release 0.3.1

group

Creates groups. Takes an object with the following fields.

Field | Description

name Required. Sets the group name
gid Integer. Specific group id
system | Boolean. Is a system group?

Example state

{
"group'

{

by
{

user

Creates users.

.json with group:

. [

"name": "newgroup"
"name": "specificgroup",
"gid": 555,

"system": true

Takes an object with the following fields.

username
shell
realname
homedir
uid

gid
system

Field | Description

Required. Sets the user name
User’s command shell
User’s real name

User’s home directory
Integer. Specific user id
Integer. Specific group id
Boolean. Is a system user?

Example state.json with user:

{

"user":

{

}l
{

l

"username": "newuser"
"username": "specificuser",
"shell":"/bin/bash",
"homedir":"/users/specificuser"
"realname":"Specific User"
"username":"windows",
"uid":666,

"system" :true

3.2. Libraries

21

Squadron Documentation, Release 0.3.1

3.3 Action and reaction

To perform actions when certain files are created or modified such as restart a service or run a command, you need to
first create an action and then create a reaction to trigger it.

3.3.1 Actions

Actions are described in actions.json in each service. An action has a name, a list of commands to run, and a list of
actions to not run this one after.

Here’s what one might look like:

{

"start" : {
"commands" : ["/etc/init.d/service start"]

}I

"reload" : {
"commands" : ["killall —-HUP service"],
"not_after" : ["start", "restart"]

s

"restart" : {
"commands" : ["/etc/init.d/service restart"],
"not_after" : ["start"]

}

So this service has three actions. The start command starts up the service. The restart command restarts it, but only if
the start command didn’t just succeed. This way you can avoid restarting a service immediately after starting it.

Here are the possible fields to put in an action:

Field Description
commands | Required. A list of commands to run
not_after A list of actions to not run this after

3.3.2 Reactions

Reaction trigger actions in this service or other services based on files being created or modified. The reactions are
described in react.json in each service.

One might look like this:
[
{
"execute": ["start", "apache2.restart"],
"when" : {
"command": "pidof service",
"exitcode_not": 0
}
} 4
{
"execute" : ["restart"],
"when" : {
"files" : ["mods—-enabled/x"]

by

22 Chapter 3. User Guide

Squadron Documentation, Release 0.3.1

"execute" : ["reload"],
"when" : {
"files" : ["x.conf", "conf.d/x"]

]

The first reaction starts this service and restarts another service called apache2 when it’s not running.

The second reaction restarts this service if there are any modules created or modified. You can use ‘files-created’ or
“files-modified’ to narrow this scope.

The third reaction reloads this service when any of the config files change.
The executing actions must be defined in actions.json or an error will be raised.

Here is a list of fields the top level reaction object can contain:

Field Description
execute | Required. A list of actions to run
when Required. An object with fields described below

Here is a list of fields that a when object can contain:

Field Description

command Command to run, used with exitcode_not

exitcode_not Run action if exit code for command isn’t this

files List. Run if any of these files were created or modified by Squadron. Can be globs

files_created List. Run if any of these files were created by Squadron. Can be globs
files_modified | List. Run if any of these files were modified by Squadron. Can be globs
always Boolean. Whether or not to always run. Default: false

not_exist List of globs/absolute paths to run if these files don’t exist

3.4 Resources

Resources are files that are available to multiple services, such as ssh private keys, which allow Squadron to deploy
software from a private git server.

Resources are located in the resources directory at the top level of Squadron:

$ 1s —-1F
config/
nodes/
resources/
services/

And inside resources can be any number of subdirectories and files. Like this:

$ tree -F resources/
resources/

| -— ssh_keys/

| |-— deployl

| | —— deployl.pub

| ‘—— old_keys/

| | -— deploy_key

| ‘—-— deploy_key.pub
‘—— other/

\

-— script.sh

3.4. Resources 23

Squadron Documentation, Release 0.3.1

So now, in ~git files within your root in a service, you can reference these keys by relative path.
Like this:

$ cat services/example/0.0.1/root/test~git
http://example.com/repo.git master ssh_keys/deployl

The ~git extension knows to look in the resources directory for the file ssh_keys/deployl, which is the secret key
needed to deploy that git repository.

You can also use resources with Action and reaction. Just specify the command like this:

{

"run" : {
"commands" : ["resources/test.sh"]
}l
"go for it" : {
"commands" : ["resources/other/file argl arg2", "resources/this.py", "touch /tmp/out"]

}

This defines two actions. The first, run, uses one resource called test.sh. The file resources/test.sh will be extracted to
a temporary location, made executable, and then executed with no arguments.

The second action go for it defines three commands to run in order. The first two are resources. The first resource will
have two command line arguments passed to it.

3.5 Tests

Testing is an important part of configuring software. Tests live in the fests directory of each service.

After the service is configured, applied, and the reactions trigger the actions, all executable files in this directory are
run.

On standard input, a JSON string is provided which describes the various configuration options for this service. It
looks like this:

{
"version": "0.0.1",
"config": {
"debug": false,
"workers": 100

}I

"atomic": {},

"dir": "/var/squadrontmp/sg-0/service",
"base_dir": "/var/service/"

}

The test must read standard input even if it does not intend to use this information.

Returning a non-zero status code indicates a test failure.

3.6 Global Configuration

Squadron keeps the global config in the default location /home/user/.squadron If you are root the default in
/etc/squadron

24 Chapter 3. User Guide

Squadron Documentation, Release 0.3.1

It also looks for config in the following places:
* /etc/squadron/config
* /ust/local/etc/squadron/config
* ~/.squadron/config

Let’s go over some of the configuration values and sections:

3.6.1 Daemon

* polltime - frequency in seconds that we check the git repo for changes

3.6.2 Squadron

* keydir - where we store any ssh keys
* nodename - name you want for the node, used to determine which node config applies to this machine
* statedir - directory to keep previous state of squadron

¢ send_status - whether or not to send node status to remote server defined in [status] section

3.6.3 Status

¢ status_host where to send status to
* status_apikey - key used for identity

* status_secret - shared secret to verify identity

3.6.4 Log

This section is a bit special, you can enter as many lines as you want here so long as they follow the
following format defined in the example:

debugonly = DEBUG file /tmp/log
* debugonly - just a friendly name, not used for anything MUST BE UNIQUE.
* DEBUG - Level to log must match one of Python’s log levels
» file - type of log, in this case this is a simple file log
* /tmp/log - parameter(s) for the type of log, in this case the file to log
to
We support three types of logs at the moment
file:
* expects file to log to as parameter
stream:
* expects stdout or stderr as the parameter

rotatingfile:

3.6. Global Configuration 25

http://docs.python.org/2/library/logging.html#logging-levels

Squadron Documentation, Release 0.3.1

* file to log to
* max file size in bytes
* max number of files to backup

Example of rotating file: rotate = DEBUG rotatingfile /tmp/rot 500 2

26 Chapter 3. User Guide

